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Chapter 2

2.State Management and Drawing
Geometric Objects

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

• Clear the window to an arbitrary color

• Force any pending drawing to complete

• Draw with any geometric primitive—points, lines, and polygons—in two or three
dimensions

• Turn states on and off and query state variables

• Control the display of those primitives—for example, draw dashed lines or
outlined polygons

• Specifynormal vectors at appropriate points on the surface of solid objects

• Usevertex arrays to store and access a lot of geometric data with only a few
function calls

• Save and restore several state variables at once
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Although you can draw complex and interesting pictures using OpenGL, they’re all
constructed from a small number of primitive graphical items. This shouldn’t be too
surprising—look at what Leonardo da Vinci accomplished with just pencils and
paintbrushes.

At the highest level of abstraction, there are three basic drawing operations: clearing the
window, drawing a geometric object, and drawing a raster object. Raster objects, which
include such things as two-dimensional images, bitmaps, and character fonts, are
covered in Chapter 8. In this chapter, you learn how to clear the screen and to draw
geometric objects, including points, straight lines, and flat polygons.

You might think to yourself, “Wait a minute. I’ve seen lots of computer graphics in
movies and on television, and there are plenty of beautifully shaded curved lines and
surfaces. How are those drawn, if all OpenGL can draw are straight lines and flat
polygons?” Even the image on the cover of this book includes a round table and objects
on the table that have curved surfaces. It turns out that all the curved lines and surfaces
you’ve seen are approximated by large numbers of little flat polygons or straight lines,
in much the same way that the globe on the cover is constructed from a large set of
rectangular blocks. The globe doesn’t appear to have a smooth surface because the
blocks are relatively large compared to the globe. Later in this chapter, we show you how
to construct curved lines and surfaces from lots of small geometric primitives.

This chapter has the following major sections:

• “A Drawing Survival Kit” explains how to clear the window and force drawing to
be completed. It also gives you basic information about controlling the color of
geometric objects and describing a coordinate system.

• “Describing Points, Lines, and Polygons” shows you what the set of primitive
geometric objects is and how to draw them.

• “Basic State Management” describes how to turn on and off some states (modes)
and query state variables.

• “Displaying Points, Lines, and Polygons” explains what control you have over the
details of how primitives are drawn—for example, what diameter points have,
whether lines are solid or dashed, and whether polygons are outlined or filled.

• “Normal Vectors” discusses how to specify normal vectors for geometric objects
and (briefly) what these vectors are for.

• “Vertex Arrays” shows you how to put lots of geometric data into just a few arrays
and how, with only a few function calls, to render the geometry it describes.
Reducing function calls may increase the efficiency and performance of rendering.

• “Attribute Groups” reveals how to query the current value of state variables and
how to save and restore several related state values all at once.
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• “Some Hints for Building Polygonal Models of Surfaces” explores the issues and
techniques involved in constructing polygonal approximations to surfaces.

One thing to keep in mind as you read the rest of this chapter is that with OpenGL, unless
you specify otherwise, every time you issue a drawing command, the specified object is
drawn. This might seem obvious, but in some systems, you first make a list of things to
draw. When your list is complete, you tell the graphics hardware to draw the items in the
list. The first style is calledimmediate-mode graphics and is the default OpenGL style.
In addition to using immediate mode, you can choose to save some commands in a list
(called adisplay list) for later drawing. Immediate-mode graphics are typically easier to
program, but display lists are often more efficient. Chapter 7 tells you how to use display
lists and why you might want to use them.

A Drawing Survival Kit

This section explains how to clear the window in preparation for drawing, set the color
of objects that are to be drawn, and force drawing to be completed. None of these
subjects has anything to do with geometric objects in a direct way, but any program that
draws geometric objects has to deal with these issues.

Clearing the Window

Drawing on a computer screen is different from drawing on paper in that the paper starts
out white, and all you have to do is draw the picture. On a computer, the memory holding
the picture is usually filled with the last picture you drew, so you typically need to clear
it to some background color before you start to draw the new scene. The color you use
for the background depends on the application. For a word processor, you might clear to
white (the color of the paper) before you begin to draw the text. If you’re drawing a view
from a spaceship, you clear to the black of space before beginning to draw the stars,
planets, and alien spaceships. Sometimes you might not need to clear the screen at all;
for example, if the image is the inside of a room, the entire graphics window gets
covered as you draw all the walls.

At this point, you might be wondering why we keep talking aboutclearing the
window—why not just draw a rectangle of the appropriate color that’s large enough to
cover the entire window? First, a special command to clear a window can be much more
efficient than a general-purpose drawing command. In addition, as you’ll see in
Chapter 3, OpenGL allows you to set the coordinate system, viewing position, and
viewing direction arbitrarily, so it might be difficult to figure out an appropriate size and
location for a window-clearing rectangle. Finally, on many machines, the graphics
hardware consists of multiple buffers in addition to the buffer containing colors of the
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pixels that are displayed. These other buffers must be cleared from time to time, and it’s
convenient to have a single command that can clear any combination of them. (See
Chapter 10 for a discussion of all the possible buffers.)

You must also know how the colors of pixels are stored in the graphics hardware known
asbitplanes. There are two methods of storage. Either the red, green, blue, and alpha
(RGBA) values of a pixel can be directly stored in the bitplanes, or a single index value
that references a color lookup table is stored. RGBA color-display mode is more
commonly used, so most of the examples in this book use it. (See Chapter 4 for more
information about both display modes.) You can safely ignore all references to alpha
values until Chapter 6.

As an example, these lines of code clear an RGBA mode window to black:

glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);

The first line sets the clearing color to black, and the next command clears the entire
window to the current clearing color. The single parameter to glClear() indicates which
buffers are to be cleared. In this case, the program clears only the color buffer, where the
image displayed on the screen is kept. Typically, you set the clearing color once, early
in your application, and then you clear the buffers as often as necessary. OpenGL keeps
track of the current clearing color as a state variable rather than requiring you to specify
it each time a buffer is cleared.

Chapter 4 and Chapter 10 talk about how other buffers are used. For now, all you need
to know is that clearing them is simple. For example, to clear both the color buffer and
the depth buffer, you would use the following sequence of commands:

glClearColor(0.0, 0.0, 0.0, 0.0);
glClearDepth(1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

In this case, the call to glClearColor() is the same as before, the glClearDepth()
command specifies the value to which every pixel of the depth buffer is to be set, and the
parameter to the glClear() command now consists of the bitwise OR of all the buffers to
be cleared. The following summary of glClear() includes a table that lists the buffers that
can be cleared, their names, and the chapter where each type of buffer is discussed.

void glClearColor(GLclampfred, GLclampfgreen, GLclampfblue,
GLclampfalpha);

Sets the current clearing color for use in clearing color buffers in RGBA mode. (See
Chapter 4 for more information on RGBA mode.) Thered, green, blue, andalpha
values are clamped if necessary to the range [0,1]. The default clearing color is (0, 0,
0, 0), which is black.
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void glClear(GLbitfieldmask);

Clears the specified buffers to their current clearing values. Themask argument is a
bitwise-ORed combination of the values listed in Table 2-1.

Before issuing a command to clear multiple buffers, you have to set the values to which
each buffer is to be cleared if you want something other than the default RGBA color,
depth value, accumulation color, and stencil index. In addition to the glClearColor() and
glClearDepth() commands that set the current values for clearing the color and depth
buffers, glClearIndex(), glClearAccum(), and glClearStencil() specify thecolor index,
accumulation color, and stencil index used to clear the corresponding buffers. (See
Chapter 4 and Chapter 10 for descriptions of these buffers and their uses.)

OpenGL allows you to specify multiple buffers because clearing is generally a slow
operation, since every pixel in the window (possibly millions) is touched, and some
graphics hardware allows sets of buffers to be cleared simultaneously. Hardware that
doesn’t support simultaneous clears performs them sequentially. The difference between

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

and

glClear(GL_COLOR_BUFFER_BIT);
glClear(GL_DEPTH_BUFFER_BIT);

is that although both have the same final effect, the first example might run faster on
many machines. It certainly won’t run more slowly.

Specifying a Color

With OpenGL, the description of the shape of an object being drawn is independent of
the description of its color. Whenever a particular geometric object is drawn, it’s drawn
using the currently specified coloring scheme. The coloring scheme might be as simple
as “draw everything in fire-engine red,” or might be as complicated as “assume the

Buffer Name Reference

Color buffer GL_COLOR_BUFFER_BIT Chapter 4

Depth buffer GL_DEPTH_BUFFER_BIT Chapter 10

Accumulation buffer GL_ACCUM_BUFFER_BIT Chapter 10

Stencil buffer GL_STENCIL_BUFFER_BIT Chapter 10

Table 2-1 Clearing Buffers
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object is made out of blue plastic, that there’s a yellow spotlight pointed in such and such
a direction, and that there’s a general low-level reddish-brown light everywhere else.” In
general, an OpenGL programmer first sets the color or coloring scheme and then draws
the objects. Until the color or coloring scheme is changed, all objects are drawn in that
color or using that coloring scheme. This method helps OpenGL achieve higher drawing
performance than would result if it didn’t keep track of the current color.

For example, the pseudocode

set_current_color(red);
draw_object(A);
draw_object(B);
set_current_color(green);
set_current_color(blue);
draw_object(C);

draws objects A and B in red, and object C in blue. The command on the fourth line that
sets the current color to green is wasted.

Coloring, lighting, and shading are all large topics with entire chapters or large sections
devoted to them. To draw geometric primitives that can be seen, however, you need some
basic knowledge of how to set the current color; this information is provided in the next
paragraphs. (See Chapter 4 and Chapter 5 for details on these topics.)

To set a color, use the command glColor3f(). It takes three parameters, all of which are
floating-point numbers between 0.0 and 1.0. The parameters are, in order, the red, green,
and bluecomponents of the color. You can think of these three values as specifying a
“mix” of colors: 0.0 means don’t use any of that component, and 1.0 means use all you
can of that component. Thus, the code

glColor3f(1.0, 0.0, 0.0);

makes the brightest red the system can draw, with no green or blue components. All
zeros makes black; in contrast, all ones makes white. Setting all three components to 0.5
yields gray (halfway between black and white). Here are eight commands and the colors
they would set.

glColor3f(0.0, 0.0, 0.0); black
glColor3f(1.0, 0.0, 0.0); red
glColor3f(0.0, 1.0, 0.0); green
glColor3f(1.0, 1.0, 0.0); yellow
glColor3f(0.0, 0.0, 1.0); blue
glColor3f(1.0, 0.0, 1.0); magenta
glColor3f(0.0, 1.0, 1.0); cyan
glColor3f(1.0, 1.0, 1.0); white
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You might have noticed earlier that the routine to set the clearing color, glClearColor(),
takes four parameters, the first three of which match the parameters for glColor3f(). The
fourth parameter is the alpha value; it’s covered in detail in “Blending” in Chapter 6. For
now, set the fourth parameter of glClearColor() to 0.0, which is its default value.

Forcing Completion of Drawing

As you saw in “OpenGL Rendering Pipeline” in Chapter 1, most modern graphics
systems can be thought of as an assembly line. The main central processing unit (CPU)
issues a drawing command. Perhaps other hardware does geometric transformations.
Clipping is performed, followed by shading and/or texturing. Finally, the values are
written into the bitplanes for display. In high-end architectures, each of these operations
is performed by a different piece of hardware that’s been designed to perform its
particular task quickly. In such an architecture, there’s no need for the CPU to wait for
each drawing command to complete before issuing the next one. While the CPU is
sending a vertex down the pipeline, the transformation hardware is working on
transforming the last one sent, the one before that is being clipped, and so on. In such a
system, if the CPU waited for each command to complete before issuing the next, there
could be a huge performance penalty.

In addition, the application might be running on more than one machine. For example,
suppose that the main program is running elsewhere (on a machine called the client) and
that you’re viewing the results of the drawing on your workstation or terminal (the
server), which is connected by a network to the client. In that case, it might be horribly
inefficient to send each command over the network one at a time, since considerable
overhead is often associated with each network transmission. Usually, the client gathers
a collection of commands into a single network packet before sending it. Unfortunately,
the network code on the client typically has no way of knowing that the graphics
program is finished drawing a frame or scene. In the worst case, it waits forever for
enough additional drawing commands to fill a packet, and you never see the completed
drawing.

For this reason, OpenGL provides the command glFlush(), which forces the client to
send the network packet even though it might not be full. Where there is no network and
all commands are truly executed immediately on the server, glFlush() might have no
effect. However, if you’re writing a program that you want to work properly both with
and without a network, include a call to glFlush() at the end of each frame or scene. Note
that glFlush() doesn’t wait for the drawing to complete—it just forces the drawing to
begin execution, thereby guaranteeing that all previous commandsexecute in finite time
even if no further rendering commands are executed.

There are other situations where glFlush() is useful.
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• Software renderers that build image in system memory and don’t want to
constantly update the screen.

• Implementations that gather sets of rendering commands to amortize start-up
costs. The aforementioned network transmission example is one instance of this.

void glFlush(void);

Forces previously issued OpenGL commands to begin execution, thus guaranteeing
that they complete in finite time.

A few commands—for example, commands that swap buffers in double-buffer
mode—automatically flush pending commands onto the network before they can occur.

If glFlush() isn’t sufficient for you, try glFinish(). This command flushes the network as
glFlush() does and then waits for notification from the graphics hardware or network
indicating that the drawing is complete in the framebuffer. You might need to use
glFinish() if you want to synchronize tasks—for example, to make sure that your
three-dimensional rendering is on the screen before you use Display PostScript to draw
labels on top of the rendering. Another example would be to ensure that the drawing is
complete before it begins to accept user input. After you issue a glFinish() command,
your graphics process is blocked until it receives notification from the graphics hardware
that the drawing is complete. Keep in mind that excessive use of glFinish() can reduce
the performance of your application, especially if you’re running over a network,
because it requires round-trip communication. If glFlush() is sufficient for your needs,
use it instead of glFinish().

void glFinish(void);

Forces all previously issued OpenGL commands to complete. This command doesn’t
return until all effects from previous commands are fully realized.

Coordinate System Survival Kit

Whenever you initially open a window or later move or resize that window, the window
system will send an event to notify you. If you are using GLUT, the notification is
automated; whatever routine has been registered to glutReshapeFunc() will be called.
You must register a callback function that will

• Reestablish the rectangular region that will be the new rendering canvas

• Define the coordinate system to which objects will be drawn
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In Chapter 3 you’ll see how to define three-dimensional coordinate systems, but right
now, just create a simple, basic two-dimensional coordinate system into which you can
draw a few objects. Call glutReshapeFunc(reshape), where reshape() is the following
function shown in Example 2-1.

Example 2-1 Reshape Callback Function

void reshape (int w, int h)
{
   glViewport (0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode (GL_PROJECTION);
   glLoadIdentity ();
   gluOrtho2D (0.0, (GLdouble) w, 0.0, (GLdouble) h);
}

The internals of GLUT will pass this function two arguments: the width and height, in
pixels, of the new, moved, or resized window. glViewport() adjusts the pixel rectangle
for drawing to be the entire new window. The next three routines adjust the coordinate
system for drawing so that the lower-left corner is (0, 0), and the upper-right corner is
(w, h) (See Figure 2-1).

To explain it another way, think about a piece of graphing paper. Thew andh values in
reshape() represent how many columns and rows of squares are on your graph paper.
Then you have to put axes on the graph paper. The gluOrtho2D() routine puts the origin,
(0, 0), all the way in the lowest, leftmost square, and makes each square represent one
unit. Now when you render the points, lines, and polygons in the rest of this chapter, they
will appear on this paper in easily predictable squares. (For now, keep all your objects
two-dimensional.)

Figure 2-1 Coordinate System Defined by w = 50, h = 50

(0, 0)

(50, 50)
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Describing Points, Lines, and Polygons

This section explains how to describe OpenGL geometric primitives. All geometric
primitives are eventually described in terms of theirvertices—coordinates that define
the points themselves, the endpoints of line segments, or the corners of polygons. The
next section discusses how these primitives are displayed and what control you have
over their display.

What Are Points, Lines, and Polygons?

You probably have a fairly good idea of what a mathematician means by the termspoint,
line, andpolygon. The OpenGL meanings are similar, but not quite the same.

One difference comes from the limitations of computer-based calculations. In any
OpenGL implementation, floating-point calculations are of finite precision, and they
have round-off errors. Consequently, the coordinates of OpenGL points, lines, and
polygons suffer from the same problems.

Another more important difference arises from the limitations of a raster graphics
display. On such a display, the smallest displayable unit is a pixel, and although pixels
might be less than 1/100 of an inch wide, they are still much larger than the
mathematician’s concepts of infinitely small (for points) or infinitely thin (for lines).
When OpenGL performs calculations, it assumes points are represented as vectors of
floating-point numbers. However, a point is typically (but not always) drawn as a single
pixel, and many different points with slightly different coordinates could be drawn by
OpenGL on the same pixel.

Points

A point is represented by a set of floating-point numbers called avertex. All internal
calculations are done as if vertices are three-dimensional. Vertices specified by the user
as two-dimensional (that is, with onlyx andy coordinates) are assigned az coordinate
equal to zero by OpenGL.

Advanced

OpenGL works in thehomogeneous coordinates of three-dimensional projective
geometry, so for internal calculations, all vertices are represented with four
floating-point coordinates (x, y, z, w). If w is different from zero, these coordinates
correspond to the Euclidean three-dimensional point (x/w, y/w, z/w). You can specify the
w coordinate in OpenGL commands, but that’s rarely done. If thew coordinate isn’t
specified, it’s understood to be 1.0. (See Appendix F for more information about
homogeneous coordinate systems.)
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Lines

In OpenGL, the termline refers to aline segment, not the mathematician’s version that
extends to infinity in both directions. There are easy ways to specify a connected series
of line segments, or even a closed, connected series of segments (see Figure 2-2). In all
cases, though, the lines constituting the connected series are specified in terms of the
vertices at their endpoints.

Figure 2-2 Two Connected Series of Line Segments

Polygons

Polygons are the areas enclosed by single closed loops of line segments, where the line
segments are specified by the vertices at their endpoints. Polygons are typically drawn
with the pixels in the interior filled in, but you can also draw them as outlines or a set of
points. (See “Polygon Details.”)

In general, polygons can be complicated, so OpenGL makes some strong restrictions on
what constitutes a primitive polygon. First, the edges of OpenGL polygons can’t
intersect (a mathematician would call a polygon satisfying this condition asimple
polygon). Second, OpenGL polygons must beconvex, meaning that they cannot have
indentations. Stated precisely, a region is convex if, given any two points in the interior,
the line segment joining them is also in the interior. See Figure 2-3 for some examples
of valid and invalid polygons. OpenGL, however, doesn’t restrict the number of line
segments making up the boundary of a convex polygon. Note that polygons with holes
can’t be described. They arenonconvex, and they can’t be drawn with a boundary made
up of a single closed loop. Be aware that if you present OpenGL with a nonconvex filled
polygon, it might not draw it as you expect. For instance, on most systems no more than
theconvex hull of the polygon would be filled. On some systems, less than the convex
hull might be filled.

Figure 2-3 Valid and Invalid Polygons

Valid Invalid
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The reason for the OpenGL restrictions on valid polygon types is that it’s simpler to
provide fast polygon-rendering hardware for that restricted class of polygons. Simple
polygons can be rendered quickly. The difficult cases are hard to detect quickly. So for
maximum performance, OpenGL crosses its fingers and assumes the polygons are
simple.

Many real-world surfaces consist of nonsimple polygons, nonconvex polygons, or
polygons with holes. Since all such polygons can be formed from unions of simple
convex polygons, some routines to build more complex objects are provided in the GLU
library. These routines take complex descriptions and tessellate them, or break them
down into groups of the simpler OpenGL polygons that can then be rendered. (See
“Polygon Tessellation” in Chapter 11 for more information about thetessellation
routines.)

Since OpenGL vertices are always three-dimensional, the points forming the boundary
of a particular polygon don’t necessarily lie on the same plane in space. (Of course, they
do in many cases—if all thez coordinates are zero, for example, or if the polygon is a
triangle.) If a polygon’s vertices don’t lie in the same plane, then after various rotations
in space, changes in the viewpoint, and projection onto the display screen, the points
might no longer form a simple convex polygon. For example, imagine a four-point
quadrilateral where the points are slightly out of plane, and look at it almost edge-on.
You can get a nonsimple polygon that resembles a bow tie, as shown in Figure 2-4,
which isn’t guaranteed to be rendered correctly. This situation isn’t all that unusual if
you approximate curved surfaces by quadrilaterals made of points lying on the true
surface. You can always avoid the problem by using triangles, since any three points
always lie on a plane.

Figure 2-4 Nonplanar Polygon Transformed to Nonsimple Polygon

Rectangles

Since rectangles are so common in graphics applications, OpenGL provides a
filled-rectangle drawing primitive, glRect*(). You can draw a rectangle as a polygon, as
described in “OpenGL Geometric Drawing Primitives,” but your particular
implementation of OpenGL might have optimized glRect*() for rectangles.



Describing Points, Lines, and Polygons 39

void glRect{sifd}(TYPE x1, TYPE y1, TYPE x2, TYPE y2);
void glRect{sifd}v(TYPE *v1, TYPE *v2);

Draws the rectangle defined by the corner points (x1, y1) and (x2, y2). The rectangle
lies in the planez=0 and has sides parallel to thex- andy-axes. If the vector form of
the function is used, the corners are given by two pointers to arrays, each of which
contains an (x, y) pair.

Note that although the rectangle begins with a particular orientation in
three-dimensional space (in thex-y plane and parallel to the axes), you can change this
by applying rotations or other transformations. (See Chapter 3 for information about
how to do this.)

Curves and Curved Surfaces

Any smoothly curved line or surface can be approximated—to any arbitrary degree of
accuracy—by short line segments or small polygonal regions. Thus, subdividing curved
lines and surfaces sufficiently and then approximating them with straight line segments
or flat polygons makes them appear curved (see Figure 2-5). If you’re skeptical that this
really works, imagine subdividing until each line segment or polygon is so tiny that it’s
smaller than a pixel on the screen.

Figure 2-5 Approximating Curves

Even though curves aren’t geometric primitives, OpenGL does provide some direct
support for subdividing and drawing them. (See Chapter 12 for information about how
to draw curves and curved surfaces.)

Specifying Vertices

With OpenGL, all geometric objects are ultimately described as an ordered set of
vertices. You use the glVertex*() command to specify a vertex.
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void glVertex{234}{sifd}[v]( TYPE coords);

Specifies a vertex for use in describing a geometric object. You can supply up to four
coordinates (x, y, z, w) for a particular vertex or as few as two (x, y) by selecting the
appropriate version of the command. If you use a version that doesn’t explicitly
specifyz orw, z is understood to be 0 andw is understood to be 1. Calls to glVertex*()
are only effective between a glBegin() and glEnd() pair.

Example 2-2 provides some examples of using glVertex*().

Example 2-2 Legal Uses of glVertex*()

glVertex2s(2, 3);
glVertex3d(0.0, 0.0, 3.1415926535898);
glVertex4f(2.3, 1.0, -2.2, 2.0);

GLdouble dvect[3] = {5.0, 9.0, 1992.0};
glVertex3dv(dvect);

The first example represents a vertex with three-dimensional coordinates (2, 3, 0).
(Remember that if it isn’t specified, thez coordinate is understood to be 0.) The
coordinates in the second example are (0.0, 0.0, 3.1415926535898) (double-precision
floating-point numbers). The third example represents the vertex with three-dimensional
coordinates (1.15, 0.5,−1.1). (Remember that thex, y, andz coordinates are eventually
divided by thew coordinate.) In the final example,dvect is a pointer to an array of three
double-precision floating-point numbers.

On some machines, the vector form of glVertex*() is more efficient, since only a single
parameter needs to be passed to the graphics subsystem. Special hardware might be able
to send a whole series of coordinates in a single batch. If your machine is like this, it’s
to your advantage to arrange your data so that the vertex coordinates are packed
sequentially in memory. In this case, there may be some gain in performance by using
the vertex array operations of OpenGL. (See “Vertex Arrays.”)

OpenGL Geometric Drawing Primitives

Now that you’ve seen how to specify vertices, you still need to know how to tell OpenGL
to create a set of points, a line, or a polygon from those vertices. To do this, you bracket
each set of vertices between a call to glBegin() and a call to glEnd(). The argument
passed to glBegin() determines what sort of geometric primitive is constructed from the
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vertices. For example, Example 2-3 specifies the vertices for the polygon shown in
Figure 2-6.

Example 2-3 Filled Polygon

glBegin(GL_POLYGON);
   glVertex2f(0.0, 0.0);
   glVertex2f(0.0, 3.0);
   glVertex2f(4.0, 3.0);
   glVertex2f(6.0, 1.5);
   glVertex2f(4.0, 0.0);
glEnd();

Figure 2-6 Drawing a Polygon or a Set of Points

If you had used GL_POINTS instead of GL_POLYGON, the primitive would have been
simply the five points shown in Figure 2-6. Table 2-2 in the following function summary
for glBegin() lists the ten possible arguments and the corresponding type of primitive.

void glBegin(GLenummode);

Marks the beginning of a vertex-data list that describes a geometric primitive. The
type of primitive is indicated bymode, which can be any of the values shown in
Table 2-2.

Value Meaning

GL_POINTS individual points

GL_LINES pairs of vertices interpreted as individual line segments

GL_LINE_STRIP series of connected line segments

GL_LINE_LOOP same as above, with a segment added between last and first
vertices

GL_TRIANGLES triples of vertices interpreted as triangles

GL_TRIANGLE_STRIP linked strip of triangles

Table 2-2 Geometric Primitive Names and Meanings

GL_POLYGON GL_POINTS
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void glEnd(void);

Marks the end of a vertex-data list.

Figure 2-7 shows examples of all the geometric primitives listed in Table 2-2. The
paragraphs that follow the figure describe the pixels that are drawn for each of the
objects. Note that in addition to points, several types of lines and polygons are defined.
Obviously, you can find many ways to draw the same primitive. The method you choose
depends on your vertex data.

GL_TRIANGLE_FAN linked fan of triangles

GL_QUADS quadruples of vertices interpreted as four-sided polygons

GL_QUAD_STRIP linked strip of quadrilaterals

GL_POLYGON boundary of a simple, convex polygon

Value Meaning

Table 2-2 Geometric Primitive Names and Meanings
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Figure 2-7 Geometric Primitive Types

As you read the following descriptions, assume thatn vertices (v0, v1, v2, ... , vn-1) are
described between a glBegin() and glEnd() pair.

GL_POINTS Draws a point at each of then vertices.

GL_LINES Draws a series of unconnected line segments. Segments
are drawn between v0 and v1, between v2 and v3, and
so on. Ifn is odd, the last segment is drawn between
vn-3 and vn-2, and vn-1 is ignored.

GL_LINE_STRIP Draws a line segment from v0 to v1, then from v1 to v2,
and so on, finally drawing the segment from vn-2 to
vn-1. Thus, a total ofn−1 line segments are drawn.
Nothing is drawn unlessn is larger than 1. There are no
restrictions on the vertices describing a line strip (or a
line loop); the lines can intersect arbitrarily.
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GL_LINE_LOOP Same as GL_LINE_STRIP, except that a final line
segment is drawn from vn-1 to v0, completing a loop.

GL_TRIANGLES Draws a series of triangles (three-sided polygons)
using vertices v0, v1, v2, then v3, v4, v5, and so on. Ifn
isn’t an exact multiple of 3, the final one or two vertices
are ignored.

GL_TRIANGLE_STRIP Draws a series of triangles (three-sided polygons)
using vertices v0, v1, v2, then v2, v1, v3 (note the order),
then v2, v3, v4, and so on. The ordering is to ensure that
the triangles are all drawn with the same orientation so
that the strip can correctly form part of a surface.
Preserving the orientation is important for some
operations, such as culling. (See “Reversing and
Culling Polygon Faces” on page 55)n must be at least
3 for anything to be drawn.

GL_TRIANGLE_FAN Same as GL_TRIANGLE_STRIP, except that the
vertices are v0, v1, v2, then v0, v2, v3, then v0, v3, v4,
and so on (see Figure 2-7).

GL_QUADS Draws a series of quadrilaterals (four-sided polygons)
using vertices v0, v1, v2, v3, then v4, v5, v6, v7, and so
on. If n isn’t a multiple of 4, the final one, two, or three
vertices are ignored.

GL_QUAD_STRIP Draws a series of quadrilaterals (four-sided polygons)
beginning with v0, v1, v3, v2, then v2, v3, v5, v4, then v4,
v5, v7, v6, and so on (see Figure 2-7).n must be at least
4 before anything is drawn. Ifn is odd, the final vertex
is ignored.

GL_POLYGON Draws a polygon using the points v0, ... , vn-1 as
vertices.n must be at least 3, or nothing is drawn. In
addition, the polygon specified must not intersect itself
and must be convex. If the vertices don’t satisfy these
conditions, the results are unpredictable.

GL_POINTS Draws a point at each of then vertices.
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Restrictions on Using glBegin() and glEnd()

The most important information about vertices is their coordinates, which are specified
by the glVertex*() command. You can also supply additional vertex-specific data for
each vertex—a color, a normal vector, texture coordinates, or any combination of
these—using special commands. In addition, a few other commands are valid between
a glBegin() and glEnd() pair. Table 2-3 contains a complete list of such valid commands.

No other OpenGL commands are valid between a glBegin() and glEnd() pair, and
making most other OpenGL calls generates an error. Some vertex array commands, such
as glEnableClientState() and glVertexPointer(), when called between glBegin() and
glEnd(), have undefined behavior but do not necessarily generate an error. (Also,
routines related to OpenGL, such as glX*() routines have undefined behavior between
glBegin() and glEnd().) These cases should be avoided, and debugging them may be
more difficult.

Note, however, that only OpenGL commands are restricted; you can certainly include
other programming-language constructs (except for calls, such as the aforementioned
glX*() routines). For example, Example 2-4 draws an outlined circle.

Example 2-4 Other Constructs between glBegin() and glEnd()

#define PI 3.1415926535898

Command Purpose of Command Reference

glVertex*() set vertex coordinates Chapter 2

glColor*() set current color Chapter 4

glIndex*() set current color index Chapter 4

glNormal*() set normal vector coordinates Chapter 2

glTexCoord*() set texture coordinates Chapter 9

glEdgeFlag*() control drawing of edges Chapter 2

glMaterial*() set material properties Chapter 5

glArrayElement() extract vertex array data Chapter 2

glEvalCoord*(), glEvalPoint*() generate coordinates Chapter 12

glCallList(), glCallLists() execute display list(s) Chapter 7

Table 2-3 Valid Commands between glBegin() and glEnd()



46 Chapter 2: State Management and Drawing Geometric Objects

GLint circle_points = 100;
glBegin(GL_LINE_LOOP);
for (i = 0; i < circle_points; i++) {
   angle = 2*PI*i/circle_points;
   glVertex2f(cos(angle), sin(angle));
}
glEnd();

Note: This example isn’t the most efficient way to draw a circle, especially if you intend
to do it repeatedly. The graphics commands used are typically very fast, but this
code calculates an angle and calls the sin() and cos() routines for each vertex; in
addition, there’s the loop overhead. (Another way to calculate the vertices of a
circle is to use a GLU routine; see “Quadrics: Rendering Spheres, Cylinders, and
Disks” in Chapter 11.) If you need to draw lots of circles, calculate the
coordinates of the vertices once and save them in an array and create a display
list (see Chapter 7), or use vertex arrays to render them.

Unless they are being compiled into a display list, all glVertex*() commands should
appear between some glBegin() and glEnd() combination. (If they appear elsewhere,
they don’t accomplish anything.) If they appear in a display list, they are executed only
if they appear between a glBegin() and a glEnd(). (See Chapter 7 for more information
about display lists.)

Although many commands are allowed between glBegin() and glEnd(), vertices are
generated only when a glVertex*() command is issued. At the moment glVertex*() is
called, OpenGL assigns the resulting vertex the current color, texture coordinates,
normal vector information, and so on. To see this, look at the following code sequence.
The first point is drawn in red, and the second and third ones in blue, despite the extra
color commands.

glBegin(GL_POINTS);
   glColor3f(0.0, 1.0, 0.0);                  /* green */
   glColor3f(1.0, 0.0, 0.0);                  /* red */
   glVertex(...);
   glColor3f(1.0, 1.0, 0.0);                  /* yellow */
   glColor3f(0.0, 0.0, 1.0);                  /* blue */
   glVertex(...);
   glVertex(...);
glEnd();

You can use any combination of the 24 versions of the glVertex*() command between
glBegin() and glEnd(), although in real applications all the calls in any particular
instance tend to be of the same form. If your vertex-data specification is consistent and
repetitive (for example, glColor*, glVertex*, glColor*, glVertex*,...), you may enhance
your program’s performance by using vertex arrays. (See “Vertex Arrays.”)
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Basic State Management

In the previous section, you saw an example of a state variable, the current RGBA color,
and how it can be associated with a primitive. OpenGL maintains many states and state
variables. An object may be rendered with lighting, texturing, hidden surface removal,
fog, or some other states affecting its appearance.

By default, most of these states are initially inactive. These states may be costly to
activate; for example, turning on texture mapping will almost certainly slow down the
speed of rendering a primitive. However, the quality of the image will improve and look
more realistic, due to the enhanced graphics capabilities.

To turn on and off many of these states, use these two simple commands:

void glEnable(GLenumcap);
void glDisable(GLenumcap);

glEnable() turns on a capability, and glDisable() turns it off. There are over 40
enumerated values that can be passed as a parameter to glEnable() or glDisable().
Some examples of these are GL_BLEND (which controls blending RGBA values),
GL_DEPTH_TEST (which controls depth comparisons and updates to the depth
buffer), GL_FOG (which controls fog), GL_LINE_STIPPLE (patterned lines),
GL_LIGHTING (you get the idea), and so forth.

You can also check if a state is currently enabled or disabled.

GLboolean glIsEnabled(GLenumcapability)

Returns GL_TRUE or GL_FALSE, depending upon whether the queried capability is
currently activated.
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The states you have just seen have two settings: on and off. However, most OpenGL
routines set values for more complicated state variables. For example, the routine
glColor3f() sets three values, which are part of the GL_CURRENT_COLOR state.
There are five querying routines used to find out what values are set for many states:

void glGetBooleanv(GLenumpname, GLboolean *params);
void glGetIntegerv(GLenumpname, GLint *params);
void glGetFloatv(GLenumpname, GLfloat *params);
void glGetDoublev(GLenumpname, GLdouble *params);
void glGetPointerv(GLenumpname, GLvoid **params);

Obtains Boolean, integer, floating-point, double-precision, or pointer state variables.
Thepname argument is a symbolic constant indicating the state variable to return, and
params is a pointer to an array of the indicated type in which to place the returned
data. See the tables in Appendix B for the possible values forpname. For example, to
get the current RGBA color, a table in Appendix B suggests you use
glGetIntegerv(GL_CURRENT_COLOR,params) or
glGetFloatv(GL_CURRENT_COLOR, params). A type conversion is performed if
necessary to return the desired variable as the requested data type.

These querying routines handle most, but not all, requests for obtaining state
information. (See “The Query Commands” in Appendix B for an additional 16 querying
routines.)

Displaying Points, Lines, and Polygons

By default, a point is drawn as a single pixel on the screen, a line is drawn solid and one
pixel wide, and polygons are drawn solidly filled in. The following paragraphs discuss
the details of how to change these default display modes.

Point Details

To control the size of a rendered point, use glPointSize() and supply the desired size in
pixels as the argument.

void glPointSize(GLfloatsize);

Sets the width in pixels for rendered points;size must be greater than 0.0 and by
default is 1.0.
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The actual collection of pixels on the screen which are drawn for various point widths
depends on whether antialiasing is enabled. (Antialiasing is a technique for smoothing
points and lines as they’re rendered; see “Antialiasing” in Chapter 6 for more detail.) If
antialiasing is disabled (the default), fractional widths are rounded to integer widths, and
a screen-aligned square region of pixels is drawn. Thus, if the width is 1.0, the square is
1 pixel by 1 pixel; if the width is 2.0, the square is 2 pixels by 2 pixels, and so on.

With antialiasing enabled, a circulargroup of pixels is drawn, and the pixels on the
boundaries are typically drawn at less than full intensity to give the edge a smoother
appearance. In this mode, non-integer widths aren’t rounded.

Most OpenGL implementations support very large point sizes. The maximum size for
antialiased points is queryable, but the same information is not available for standard,
aliased points. A particular implementation, however, might limit the size of standard,
aliased points to not less than its maximum antialiased point size, rounded to the nearest
integer value. You can obtain this floating-point value by using
GL_POINT_SIZE_RANGE with glGetFloatv().

Line Details

With OpenGL, you can specify lines with different widths and lines that arestippled in
various ways—dotted, dashed, drawn with alternating dots and dashes, and so on.

Wide Lines

void glLineWidth(GLfloatwidth);

Sets the width in pixels for rendered lines;width must be greater than 0.0 and by
default is 1.0.

The actual rendering of lines is affected by the antialiasing mode, in the same way as for
points. (See “Antialiasing” in Chapter 6.) Without antialiasing, widths of 1, 2, and 3
draw lines 1, 2, and 3 pixels wide. With antialiasing enabled, non-integer line widths are
possible, and pixels on the boundaries are typically drawn at less than full intensity. As
with point sizes, a particular OpenGL implementation might limit the width of
nonantialiased lines to its maximum antialiased line width, rounded to the nearest
integer value. You can obtain this floating-point value by using
GL_LINE_WIDTH_RANGE with glGetFloatv().
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Note: Keep in mind that by default lines are 1 pixel wide, so they appear wider on
lower-resolution screens. For computer displays, this isn’t typically an issue, but
if you’re using OpenGL to render to a high-resolution plotter, 1-pixel lines might
be nearly invisible. To obtain resolution-independent line widths, you need to
take into account the physical dimensions of pixels.

Advanced

With nonantialiased wide lines, the line width isn’t measured perpendicular to the line.
Instead, it’s measured in they direction if the absolute value of the slope is less than 1.0;
otherwise, it’s measured in thex direction. The rendering of an antialiased line is exactly
equivalent to the rendering of a filled rectangle of the given width, centered on the exact
line.

Stippled Lines

To make stippled (dotted or dashed) lines, you use the command glLineStipple() to
define thestipple pattern, and then you enable line stippling with glEnable().

glLineStipple(1, 0x3F07);
glEnable(GL_LINE_STIPPLE);

void glLineStipple(GLintfactor, GLushortpattern);

Sets the current stippling pattern for lines. Thepattern argument is a 16-bit series of
0s and 1s, and it’s repeated as necessary to stipple a given line. A 1 indicates that
drawing occurs, and 0 that it does not, on a pixel-by-pixel basis, beginning with the
low-order bit of the pattern. The pattern can be stretched out by usingfactor, which
multiplies each subseries of consecutive 1s and 0s. Thus, if three consecutive 1s
appear in the pattern, they’re stretched to six iffactor is 2.factor is clamped to lie
between 1 and 255. Line stippling must be enabled by passing GL_LINE_STIPPLE
to glEnable(); it’s disabled by passing the same argument to glDisable().

With the preceding example and the pattern 0x3F07 (which translates to
0011111100000111 in binary), a line would be drawn with 3 pixels on, then 5 off, 6 on,
and 2 off. (If this seems backward, remember that the low-order bit is used first.) Iffactor
had been 2, the pattern would have been elongated: 6 pixels on, 10 off, 12 on, and 4 off.
Figure 2-8 shows lines drawn with different patterns and repeat factors. If you don’t
enable line stippling, drawing proceeds as ifpattern were 0xFFFF andfactor 1. (Use
glDisable() with GL_LINE_STIPPLE to disable stippling.) Note that stippling can be
used in combination with wide lines to produce wide stippled lines.
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Figure 2-8 Stippled Lines

One way to think of the stippling is that as the line is being drawn, the pattern is shifted
by 1 bit each time a pixel is drawn (orfactor pixels are drawn, iffactor isn’t 1). When a
series of connected line segments is drawn between a single glBegin() and glEnd(), the
pattern continues to shift as one segment turns into the next. This way, a stippling pattern
continues across a series of connected line segments. When glEnd() is executed, the
pattern is reset, and—if more lines are drawn before stippling is disabled—the stippling
restarts at the beginning of the pattern. If you’re drawing lines with GL_LINES, the
pattern resets for each independent line.

Example 2-5 illustrates the results of drawing with a couple of different stipple patterns
and line widths. It also illustrates what happens if the lines are drawn as a series of
individual segments instead of a single connected line strip. The results of running the
program appear in Figure 2-9.

Figure 2-9 Wide Stippled Lines

Example 2-5 Line Stipple Patterns: lines.c

#include <GL/gl.h>
#include <GL/glut.h>

#define drawOneLine(x1,y1,x2,y2)  glBegin(GL_LINES);  \

PATTERN
0x00FF
0x00FF
0x0C0F
0x0C0F
0xAAAA
0xAAAA
0xAAAA
0xAAAA

FACTOR
1
2
1
3
1
2
3
4
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   glVertex2f ((x1),(y1)); glVertex2f ((x2),(y2)); glEnd();

void init(void)
{
   glClearColor (0.0, 0.0, 0.0, 0.0);
   glShadeModel (GL_FLAT);
}

void display(void)
{
   int i;

   glClear (GL_COLOR_BUFFER_BIT);
/* select white for all lines  */
   glColor3f (1.0, 1.0, 1.0);

/* in 1st row, 3 lines, each with a different stipple  */
   glEnable (GL_LINE_STIPPLE);

   glLineStipple (1, 0x0101);  /*  dotted  */
   drawOneLine (50.0, 125.0, 150.0, 125.0);
   glLineStipple (1, 0x00FF);  /*  dashed  */
   drawOneLine (150.0, 125.0, 250.0, 125.0);
   glLineStipple (1, 0x1C47);  /*  dash/dot/dash  */
   drawOneLine (250.0, 125.0, 350.0, 125.0);
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/* in 2nd row, 3 wide lines, each with different stipple */
   glLineWidth (5.0);
   glLineStipple (1, 0x0101);  /*  dotted  */
   drawOneLine (50.0, 100.0, 150.0, 100.0);
   glLineStipple (1, 0x00FF);  /*  dashed  */
   drawOneLine (150.0, 100.0, 250.0, 100.0);
   glLineStipple (1, 0x1C47);  /*  dash/dot/dash  */
   drawOneLine (250.0, 100.0, 350.0, 100.0);
   glLineWidth (1.0);

/* in 3rd row, 6 lines, with dash/dot/dash stipple  */
/* as part of a single connected line strip         */
   glLineStipple (1, 0x1C47);  /*  dash/dot/dash  */
   glBegin (GL_LINE_STRIP);
   for (i = 0; i < 7; i++)
      glVertex2f (50.0 + ((GLfloat) i * 50.0), 75.0);
   glEnd ();

/* in 4th row, 6 independent lines with same stipple  */
   for (i = 0; i < 6; i++) {
      drawOneLine (50.0 + ((GLfloat) i * 50.0), 50.0,
         50.0 + ((GLfloat)(i+1) * 50.0), 50.0);
   }

/* in 5th row, 1 line, with dash/dot/dash stipple    */
/* and a stipple repeat factor of 5                  */
   glLineStipple (5, 0x1C47);  /*  dash/dot/dash  */
   drawOneLine (50.0, 25.0, 350.0, 25.0);

   glDisable (GL_LINE_STIPPLE);
   glFlush ();
}

void reshape (int w, int h)
{
   glViewport (0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode (GL_PROJECTION);
   glLoadIdentity ();
   gluOrtho2D (0.0, (GLdouble) w, 0.0, (GLdouble) h);
}
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int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
   glutInitWindowSize (400, 150);
   glutInitWindowPosition (100, 100);
   glutCreateWindow (argv[0]);
   init ();
   glutDisplayFunc(display);
   glutReshapeFunc(reshape);
   glutMainLoop();
   return 0;
}

Polygon Details

Polygons are typically drawn by filling in all the pixels enclosed within the boundary,
but you can also draw them as outlined polygons or simply as points at the vertices. A
filled polygon might be solidly filled or stippled with a certain pattern. Although the
exact details are omitted here, filled polygons are drawn in such a way that if adjacent
polygons share an edge or vertex, the pixels making up the edge or vertex are drawn
exactly once—they’re included in only one of the polygons. This is done so that partially
transparent polygons don’t have their edges drawn twice, which would make those edges
appear darker (or brighter, depending on what color you’re drawing with). Note that it
might result in narrow polygons having no filled pixels in one or more rows or columns
of pixels. Antialiasing polygons is more complicated than for points and lines. (See
“Antialiasing” in Chapter 6 for details.)

Polygons as Points, Outlines, or Solids

A polygon has two sides—front and back—and might be rendered differently depending
on which side is facing the viewer. This allows you to have cutaway views of solid
objects in which there is an obvious distinction between the parts that are inside and
those that are outside. By default, both front and back faces are drawn in the same way.
To change this, or to draw only outlines or vertices, use glPolygonMode().
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void glPolygonMode(GLenumface, GLenummode);

Controls the drawing mode for a polygon’s front and back faces. The parameterface
can be GL_FRONT_AND_BACK, GL_FRONT, or GL_BACK;mode can be
GL_POINT, GL_LINE, or GL_FILL to indicate whether the polygon should be
drawn as points, outlined, or filled. By default, both the front and back faces are
drawn filled.

For example, you can have thefront faces filled and theback faces outlined with two
calls to this routine:

glPolygonMode(GL_FRONT, GL_FILL);
glPolygonMode(GL_BACK, GL_LINE);

Reversing and Culling Polygon Faces

By convention, polygons whose vertices appear in counterclockwise order on the screen
are called front-facing. You can construct the surface of any “reasonable” solid—a
mathematician would call such a surface an orientable manifold (spheres, donuts, and
teapots are orientable; Klein bottles and Möbius strips aren’t)—from polygons of
consistent orientation. In other words, you can use all clockwise polygons, or all
counterclockwise polygons. (This is essentially the mathematical definition of
orientable.)

Suppose you’ve consistently described a model of an orientable surface but that you
happen to have the clockwise orientation on the outside. You can swap what OpenGL
considers the back face by using the function glFrontFace(), supplying the desired
orientation for front-facing polygons.

void glFrontFace(GLenummode);

Controls how front-facing polygons are determined. By default,mode is GL_CCW,
which corresponds to a counterclockwise orientation of the ordered vertices of a
projected polygon in window coordinates. Ifmode is GL_CW, faces with a clockwise
orientation are considered front-facing.

In a completely enclosed surface constructed from opaque polygons with a consistent
orientation, none of the back-facing polygons are ever visible—they’re always obscured
by the front-facing polygons. If you are outside this surface, you might enableculling to
discard polygons that OpenGL determines are back-facing. Similarly, if you are inside
the object, only back-facing polygons are visible. To instruct OpenGL to discard front-
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or back-facing polygons, use the command glCullFace() and enable culling with
glEnable().

void glCullFace(GLenummode);

Indicates which polygons should be discarded (culled) before they’re converted to
screen coordinates. The mode is either GL_FRONT, GL_BACK, or
GL_FRONT_AND_BACK to indicate front-facing, back-facing, or all polygons. To
take effect, culling must be enabled using glEnable() with GL_CULL_FACE; it can
be disabled with glDisable() and the same argument.

Advanced

In more technical terms, the decision of whether a face of a polygon is front- or
back-facing depends on the sign of the polygon’s area computed in window
coordinates. One way to compute this area is

wherexi andyi are thex andy window coordinates of theith vertex of then-vertex
polygon and

Assuming that GL_CCW has been specified, ifa>0, the polygon corresponding to that
vertex is considered to be front-facing; otherwise, it’s back-facing. If GL_CW is
specified and ifa<0, then the corresponding polygon is front-facing; otherwise, it’s
back-facing.

Try This

Modify Example 2-5 by adding some filled polygons. Experiment with different colors.
Try different polygon modes. Also enable culling to see its effect.

Stippling Polygons

By default, filled polygons are drawn with a solid pattern. They can also be filled with a
32-bit by 32-bitwindow-aligned stipple pattern, which you specify with
glPolygonStipple().

n-1

a = 1 xi yi+1 - xi+1 yi
      

2 
i=0

i+1 is (i+1) mod n.
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void glPolygonStipple(const GLubyte *mask);

Defines the current stipple pattern for filled polygons. The argumentmask is a pointer
to a 32×32 bitmap that’s interpreted as a mask of 0s and 1s. Where a 1 appears, the
corresponding pixel in the polygon is drawn, and where a 0 appears, nothing is drawn.
Figure 2-10 shows how a stipple pattern is constructed from the characters inmask.
Polygon stippling is enabled and disabled by using glEnable() and glDisable() with
GL_POLYGON_STIPPLE as the argument. The interpretation of themask data is
affected by the glPixelStore*() GL_UNPACK* modes. (See “Controlling
Pixel-Storage Modes” in Chapter 8.)

In addition to defining the current polygon stippling pattern, you must enable stippling:

glEnable(GL_POLYGON_STIPPLE);

Use glDisable() with the same argument to disable polygon stippling.

Figure 2-11 shows the results of polygons drawn unstippled and then with two different
stippling patterns. The program is shown in Example 2-6. The reversal of white to black
(from Figure 2-10 to Figure 2-11) occurs because the program draws in white over a
black background, using the pattern in Figure 2-10 as a stencil.
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Figure 2-10 Constructing a Polygon Stipple Pattern

128 64 32 16 8 4 2 1

By default, for each byte the most significant bit is first.
Bit ordering can be changed by calling glPixelStore*() .

128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1

128 64 32 16 8 4 2 1
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Figure 2-11 Stippled Polygons

Example 2-6 Polygon Stipple Patterns: polys.c

#include <GL/gl.h>
#include <GL/glut.h>
void display(void)
{
   GLubyte fly[] = {
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
      0x03, 0x80, 0x01, 0xC0, 0x06, 0xC0, 0x03, 0x60,
      0x04, 0x60, 0x06, 0x20, 0x04, 0x30, 0x0C, 0x20,
      0x04, 0x18, 0x18, 0x20, 0x04, 0x0C, 0x30, 0x20,
      0x04, 0x06, 0x60, 0x20, 0x44, 0x03, 0xC0, 0x22,
      0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
      0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
      0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
      0x66, 0x01, 0x80, 0x66, 0x33, 0x01, 0x80, 0xCC,
      0x19, 0x81, 0x81, 0x98, 0x0C, 0xC1, 0x83, 0x30,
      0x07, 0xe1, 0x87, 0xe0, 0x03, 0x3f, 0xfc, 0xc0,
      0x03, 0x31, 0x8c, 0xc0, 0x03, 0x33, 0xcc, 0xc0,
      0x06, 0x64, 0x26, 0x60, 0x0c, 0xcc, 0x33, 0x30,
      0x18, 0xcc, 0x33, 0x18, 0x10, 0xc4, 0x23, 0x08,
      0x10, 0x63, 0xC6, 0x08, 0x10, 0x30, 0x0c, 0x08,
      0x10, 0x18, 0x18, 0x08, 0x10, 0x00, 0x00, 0x08};
   GLubyte halftone[] = {
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
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      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55};

   glClear (GL_COLOR_BUFFER_BIT);
   glColor3f (1.0, 1.0, 1.0);

/*  draw one solid, unstippled rectangle,       */
/*  then two stippled rectangles                */
   glRectf (25.0, 25.0, 125.0, 125.0);
   glEnable (GL_POLYGON_STIPPLE);
   glPolygonStipple (fly);
   glRectf (125.0, 25.0, 225.0, 125.0);
   glPolygonStipple (halftone);
   glRectf (225.0, 25.0, 325.0, 125.0);
   glDisable (GL_POLYGON_STIPPLE);

   glFlush ();
}

void init (void)
{
   glClearColor (0.0, 0.0, 0.0, 0.0);
   glShadeModel (GL_FLAT);
}

void reshape (int w, int h)
{
   glViewport (0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode (GL_PROJECTION);
   glLoadIdentity ();
   gluOrtho2D (0.0, (GLdouble) w, 0.0, (GLdouble) h);
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
   glutInitWindowSize (350, 150);
   glutCreateWindow (argv[0]);
   init ();
   glutDisplayFunc(display);
   glutReshapeFunc(reshape);
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   glutMainLoop();
   return 0;
}

You might want to use display lists to store polygon stipple patterns to maximize
efficiency. (See “Display-List Design Philosophy” in Chapter 7.)

Marking Polygon Boundary Edges

Advanced

OpenGL can render only convex polygons, but many nonconvex polygons arise in
practice. To draw these nonconvex polygons, you typically subdivide them into convex
polygons—usually triangles, as shown in Figure 2-12—and then draw the triangles.
Unfortunately, if you decompose a general polygon into triangles and draw the triangles,
you can’t really use glPolygonMode() to draw the polygon’s outline, since you get all
the triangle outlines inside it. To solve this problem, you can tell OpenGL whether a
particular vertex precedes a boundary edge; OpenGL keeps track of this information by
passing along with each vertex a bit indicating whether that vertex is followed by a
boundary edge. Then, when a polygon is drawn in GL_LINE mode, the nonboundary
edges aren’t drawn. In Figure 2-12, the dashed lines represent added edges.

Figure 2-12 Subdividing a Nonconvex Polygon

By default, all vertices are marked as preceding a boundary edge, but you can manually
control the setting of theedge flag with the command glEdgeFlag*(). This command is
used between glBegin() and glEnd() pairs, and it affects all the vertices specified after it
until the next glEdgeFlag() call is made. It applies only to vertices specified for
polygons, triangles, and quads, not to those specified for strips of triangles or quads.
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void glEdgeFlag(GLbooleanflag);
void glEdgeFlagv(const GLboolean *flag);

Indicates whether a vertex should be considered as initializing a boundary edge of a
polygon. Ifflag is GL_TRUE, the edge flag is set to TRUE (the default), and any
vertices created are considered to precede boundary edges until this function is called
again withflag being GL_FALSE.

As an example, Example 2-7 draws the outline shown in Figure 2-13.

Figure 2-13 Outlined Polygon Drawn Using Edge Flags

Example 2-7 Marking Polygon Boundary Edges

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
glBegin(GL_POLYGON);
    glEdgeFlag(GL_TRUE);
    glVertex3fv(V0);
    glEdgeFlag(GL_FALSE);
    glVertex3fv(V1);
    glEdgeFlag(GL_TRUE);
    glVertex3fv(V2);
glEnd();

Normal Vectors

A normal vector (or normal, for short) is a vector that points in a direction that’s
perpendicular to a surface. For a flat surface, one perpendicular direction is the same for
every point on the surface, but for a general curved surface, the normal direction might
be different at each point on the surface. With OpenGL, you can specify a normal for
each polygon or for each vertex. Vertices of the same polygon might share the same
normal (for a flat surface) or have different normals (for a curved surface). But you can’t
assign normals anywhere other than at the vertices.

An object’s normal vectors define the orientation of its surface in space—in particular,
its orientation relative to light sources. These vectors are used by OpenGL to determine
how much light the object receives at its vertices. Lighting—a large topic by itself—is

V0

V2

V1
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the subject of Chapter 5, and you might want to review the following information after
you’ve read that chapter. Normal vectors are discussed briefly here because you define
normal vectors for an object at the same time you define the object’s geometry.

You use glNormal*() to set the current normal to the value of the argument passed in.
Subsequent calls to glVertex*() cause the specified vertices to be assigned the current
normal. Often, each vertex has a different normal, which necessitates a series of
alternating calls, as in Example 2-8.

Example 2-8 Surface Normals at Vertices

glBegin (GL_POLYGON);
   glNormal3fv(n0);
   glVertex3fv(v0);
   glNormal3fv(n1);
   glVertex3fv(v1);
   glNormal3fv(n2);
   glVertex3fv(v2);
   glNormal3fv(n3);
   glVertex3fv(v3);
glEnd();

void glNormal3{bsidf}(TYPE nx, TYPE ny, TYPE nz);
void glNormal3{bsidf}v(constTYPE *v);

Sets the current normal vector as specified by the arguments. The nonvector version
(without the v) takes three arguments, which specify an (nx, ny, nz) vector that’s taken
to be the normal. Alternatively, you can use the vector version of this function (with
the v) and supply a single array of three elements to specify the desired normal. The
b, s, and i versions scale their parameter values linearly to the range [−1.0,1.0].

There’s no magic to finding the normals for an object—most likely, you have to perform
some calculations that might include taking derivatives—but there are several
techniques and tricks you can use to achieve certain effects. Appendix E explains how
to find normal vectors for surfaces. If you already know how to do this, if you can count
on always being supplied with normal vectors, or if you don’t want to use the lighting
facility provided by OpenGL lighting facility, you don’t need to read this appendix.

Note that at a given point on a surface, two vectors are perpendicular to the surface, and
they point in opposite directions. By convention, the normal is the one that points to the
outside of the surface being modeled. (If you get inside and outside reversed in your
model, just change every normal vector from (x, y, z) to (−x, −y, −z)).

Also, keep in mind that since normal vectors indicate direction only, their length is
mostly irrelevant. You can specify normals of any length, but eventually they have to be
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converted to having a length of 1 before lighting calculations are performed. (A vector
that has a length of 1 is said to be of unit length, ornormalized.) In general, you should
supply normalized normal vectors. To make a normal vector of unit length, divide each
of its x, y, z components by the length of the normal:

Normal vectors remain normalized as long as your model transformations include only
rotations and translations. (See Chapter 3 for a discussion of transformations.) If you
perform irregular transformations (such as scaling or multiplying by a shear matrix), or
if you specify nonunit-length normals, then you should have OpenGL automatically
normalize your normal vectors after the transformations. To do this, call glEnable() with
GL_NORMALIZE as its argument. By default, automatic normalization is disabled.
Note that automatic normalization typically requires additional calculations that might
reduce the performance of your application.

Vertex Arrays

You may have noticed that OpenGL requires many function calls to render geometric
primitives. Drawing a 20-sided polygon requires 22 function calls: one call to glBegin(),
one call for each of the vertices, and a final call to glEnd(). In the two previous code
examples, additional information (polygon boundary edge flags or surface normals)
added function calls for each vertex. This can quickly double or triple the number of
function calls required for one geometric object. For some systems, function calls have
a great deal of overhead and can hinder performance.

An additional problem is the redundant processing of vertices that are shared between
adjacent polygons. For example, the cube in Figure 2-14 has six faces and eight shared
vertices. Unfortunately, using the standard method of describing this object, each vertex
would have to be specified three times: once for every face that uses it. So 24 vertices
would be processed, even though eight would be enough.

Figure 2-14 Six Sides; Eight Shared Vertices

OpenGL has vertex array routines that allow you to specify a lot of vertex-related data
with just a few arrays and to access that data with equally few function calls. Using

  x2 + y2 + z2
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vertex array routines, all 20 vertices in a 20-sided polygon could be put into one array
and called with one function. If each vertex also had a surface normal, all 20 surface
normals could be put into another array and also called with one function.

Arranging data in vertex arrays may increase the performance of your application. Using
vertex arrays reduces the number of function calls, which improves performance. Also,
using vertex arrays may allow non-redundant processing of shared vertices. (Vertex
sharing is not supported on all implementations of OpenGL.)

Note: Vertex arrays are standard in version 1.1 of OpenGL but were not part of the
OpenGL 1.0 specification. With OpenGL 1.0, some vendors have implemented
vertex arrays as an extension.

There are three steps to using vertex arrays to render geometry.

1. Activate (enable) up to six arrays, each to store a different type of data: vertex
coordinates, RGBA colors, color indices, surface normals, texture coordinates, or
polygon edge flags.

2. Put data into the array or arrays. The arrays are accessed by the addresses of (that
is, pointers to) their memory locations. In the client-server model, this data is
stored in the client’s address space.

3. Draw geometry with the data. OpenGL obtains the data from all activated arrays
by dereferencing the pointers. In the client-server model, the data is transferred to
the server’s address space. There are three ways to do this:

a. Accessing individual array elements (randomly hopping around)

b. Creating a list of individual array elements (methodically hopping around)

c. Processing sequential array elements

The dereferencing method you choose may depend upon the type of problem you
encounter.

Interleaved vertex array data is another common method of organization. Instead of
having up to six different arrays, each maintaining a different type of data (color, surface
normal, coordinate, and so on), you might have the different types of data mixed into a
single array. (See “Interleaved Arrays” for two methods of solving this.)

Step 1: Enabling Arrays

The first step is to call glEnableClientState() with an enumerated parameter, which
activates the chosen array. In theory, you may need to call this up to six times to activate
the six available arrays. In practice, you’ll probably activate only between one to four
arrays. For example, it is unlikely that you would activate both GL_COLOR_ARRAY
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and GL_INDEX_ARRAY, since your program’s display mode supports either RGBA
mode or color-index mode, but probably not both simultaneously.

void glEnableClientState(GLenumarray)

Specifies the array to enable. Symbolic constants GL_VERTEX_ARRAY,
GL_COLOR_ARRAY, GL_INDEX_ARRAY, GL_NORMAL_ARRAY,
GL_TEXTURE_COORD_ARRAY, and GL_EDGE_FLAG_ARRAY are acceptable
parameters.

If you use lighting, you may want to define a surface normal for every vertex. (See
“Normal Vectors.”) To use vertex arrays for that case, you activate both the surface
normal and vertex coordinate arrays:

glEnableClientState(GL_NORMAL_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);

Suppose that you want to turn off lighting at some point and just draw the geometry
using a single color. You want to call glDisable() to turn off lighting states (see
Chapter 5). Now that lighting has been deactivated, you also want to stop changing the
values of the surface normal state, which is wasted effort. To do that, you call

glDisableClientState(GL_NORMAL_ARRAY);

void glDisableClientState(GLenumarray);

Specifies the array to disable. Accepts the same symbolic constants as
glEnableClientState().

You might be asking yourself why the architects of OpenGL created these new (and
long!) command names, gl*ClientState(). Why can’t you just call glEnable() and
glDisable()? One reason is that glEnable() and glDisable() can be stored in a display list,
but the specification of vertex arrays cannot, because the data remains on the client’s
side.

Step 2: Specifying Data for the Arrays

There is a straightforward way by which a single command specifies a single array in
the client space. There are six different routines to specify arrays—one routine for each
kind of array. There is also a command that can specify several client-space arrays at
once, all originating from a single interleaved array.
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void glVertexPointer(GLint size, GLenumtype, GLsizeistride,
const GLvoid*pointer);

Specifies where spatial coordinate data can be accessed.pointer is the memory
address of the first coordinate of the first vertex in the array.type specifies the data
type (GL_SHORT, GL_INT, GL_FLOAT, or GL_DOUBLE) of each coordinate in
the array.size is the number of coordinates per vertex, which must be 2, 3, or 4.stride
is the byte offset between consecutive vertexes. Ifstride is 0, the vertices are
understood to be tightly packed in the array.

To access the other five arrays, there are five similar routines:

void glColorPointer(GLintsize, GLenumtype, GLsizeistride,
const GLvoid *pointer);

void glIndexPointer(GLenumtype, GLsizeistride, const GLvoid *pointer);
void glNormalPointer(GLenumtype, GLsizeistride,

const GLvoid *pointer);
void glTexCoordPointer(GLintsize, GLenumtype, GLsizeistride,

const GLvoid *pointer);
void glEdgeFlagPointer(GLsizeistride, const GLvoid *pointer);
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The main differences among the routines are whether size and type are unique or must
be specified. For example, a surface normal always has three components, so it is
redundant to specify its size. An edge flag is always a single Boolean, so neither size nor
type needs to be mentioned. Table 2-4 displays legal values for size and data types.

Example 2-9 uses vertex arrays for both RGBA colors and vertex coordinates. RGB
floating-point values and their corresponding (x, y) integer coordinates are loaded into
the GL_COLOR_ARRAY and GL_VERTEX_ARRAY.

Example 2-9 Enabling and Loading Vertex Arrays: varray.c

static GLint vertices[] = {25, 25,
                          100, 325,
                          175, 25,
                          175, 325,
                          250, 25,
                          325, 325};
static GLfloat colors[] = {1.0, 0.2, 0.2,
                          0.2, 0.2, 1.0,
                          0.8, 1.0, 0.2,
                          0.75, 0.75, 0.75,
                          0.35, 0.35, 0.35,
                          0.5, 0.5, 0.5};

glEnableClientState (GL_COLOR_ARRAY);
glEnableClientState (GL_VERTEX_ARRAY);

Command Sizes Values for type  Argument

glVertexPointer 2, 3, 4 GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE

glNormalPointer 3 GL_BYTE, GL_SHORT, GL_INT, GL_FLOAT,
GL_DOUBLE

glColorPointer 3, 4 GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT,
GL_UNSIGNED_SHORT, GL_INT,
GL_UNSIGNED_INT, GL_FLOAT, GL_DOUBLE

glIndexPointer 1 GL_UNSIGNED_BYTE, GL_SHORT, GL_INT,
GL_FLOAT, GL_DOUBLE

glTexCoordPointer 1, 2, 3, 4 GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE

glEdgeFlagPointer 1 no type argument (type of data must be GLboolean)

Table 2-4 Vertex Array Sizes (Values per Vertex) and Data Types
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glColorPointer (3, GL_FLOAT, 0, colors);
glVertexPointer (2, GL_INT, 0, vertices);

Stride

With a stride of zero, each type of vertex array (RGB color, color index, vertex
coordinate, and so on) must be tightly packed. The data in the array must be
homogeneous; that is, the data must be all RGB color values, all vertex coordinates, or
all some other data similar in some fashion.

Using a stride of other than zero can be useful, especially when dealing with interleaved
arrays. In the following array of GLfloats, there are six vertices. For each vertex, there
are three RGB color values, which alternate with the (x, y, z) vertex coordinates.

static GLfloat intertwined[] =
      {1.0, 0.2, 1.0, 100.0, 100.0, 0.0,
       1.0, 0.2, 0.2, 0.0, 200.0, 0.0,
       1.0, 1.0, 0.2, 100.0, 300.0, 0.0,
       0.2, 1.0, 0.2, 200.0, 300.0, 0.0,
       0.2, 1.0, 1.0, 300.0, 200.0, 0.0,
       0.2, 0.2, 1.0, 200.0, 100.0, 0.0};

Stride allows a vertex array to access its desired data at regular intervals in the array. For
example, to reference only the color values in theintertwined array, the following call
starts from the beginning of the array (which could also be passed as&intertwined[0])
and jumps ahead 6 * sizeof(GLfloat) bytes, which is the size of both the color and vertex
coordinate values. This jump is enough to get to the beginning of the data for the next
vertex.

glColorPointer (3, GL_FLOAT, 6 * sizeof(GLfloat), intertwined);

For the vertex coordinate pointer, you need to start from further in the array, at the fourth
element ofintertwined (remember that C programmers start counting at zero).

glVertexPointer(3, GL_FLOAT,6*sizeof(GLfloat), &intertwined[3]);

Step 3: Dereferencing and Rendering

Until the contents of the vertex arrays are dereferenced, the arrays remain on the client
side, and their contents are easily changed. In Step 3, contents of the arrays are obtained,
sent down to the server, and then sent down the graphics processing pipeline for
rendering.

There are three ways to obtain data: from a single array element (indexed location), from
a sequence of array elements, and from an ordered list of array elements.
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Dereference a Single Array Element

void glArrayElement(GLintith)

Obtains the data of one (theith) vertex for all currently enabled arrays. For the vertex
coordinate array, the corresponding command would be glVertex[size][ type]v(),
wheresize is one of [2,3,4], andtype is one of [s,i,f,d] for GLshort, GLint, GLfloat,
and GLdouble respectively. Both size and type were defined by glVertexPointer(). For
other enabled arrays, glArrayElement() calls glEdgeFlagv(),
glTexCoord[size][ type]v(), glColor[size][ type]v(), glIndex[type]v(), and
glNormal[type]v(). If the vertex coordinate array is enabled, the glVertex*v() routine
is executed last, after the execution (if enabled) of up to five corresponding array
values.

glArrayElement() is usually called between glBegin() and glEnd(). (If called outside,
glArrayElement() sets the current state for all enabled arrays, except for vertex, which
has no current state.) In Example 2-10, a triangle is drawn using the third, fourth, and
sixth vertices from enabled vertex arrays (again, remember that C programmers begin
counting array locations with zero).

Example 2-10 Using glArrayElement() to Define Colors and Vertices

glEnableClientState (GL_COLOR_ARRAY);
glEnableClientState (GL_VERTEX_ARRAY);
glColorPointer (3, GL_FLOAT, 0, colors);
glVertexPointer (2, GL_INT, 0, vertices);

glBegin(GL_TRIANGLES);
glArrayElement (2);
glArrayElement (3);
glArrayElement (5);
glEnd();

When executed, the latter five lines of code has the same effect as

glBegin(GL_TRIANGLES);
glColor3fv(colors+(2*3*sizeof(GLfloat));
glVertex3fv(vertices+(2*2*sizeof(GLint));
glColor3fv(colors+(3*3*sizeof(GLfloat));
glVertex3fv(vertices+(3*2*sizeof(GLint));
glColor3fv(colors+(5*3*sizeof(GLfloat));
glVertex3fv(vertices+(5*2*sizeof(GLint));
glEnd();

Since glArrayElement() is only a single function call per vertex, it may reduce the
number of function calls, which increases overall performance.
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Be warned that if the contents of the array are changed between glBegin() and glEnd(),
there is no guarantee that you will receive original data or changed data for your
requested element. To be safe, don’t change the contents of any array element which
might be accessed until the primitive is completed.

Dereference a List of Array Elements

glArrayElement() is good for randomly “hopping around” your data arrays. A similar
routine, glDrawElements(), is good for hopping around your data arrays in a more
orderly manner.

void glDrawElements(GLenummode, GLsizeicount, GLenumtype,
void *indices);

Defines a sequence of geometric primitives usingcount number of elements, whose
indices are stored in the arrayindices. type must be one of GL_UNSIGNED_BYTE,
GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT, indicating the data type of the
indices array.mode specifies what kind of primitives are constructed and is one of the
same values that is accepted by glBegin(); for example, GL_POLYGON,
GL_LINE_LOOP, GL_LINES, GL_POINTS, and so on.

The effect of glDrawElements() is almost the same as this command sequence:

int i;
glBegin (mode);
for (i = 0; i < count; i++)
   glArrayElement(indices[i]);
glEnd();

glDrawElements() additionally checks to make suremode, count, andtype are valid.
Also, unlike the preceding sequence, executing glDrawElements() leaves several states
indeterminate. After execution of glDrawElements(), current RGB color, color index,
normal coordinates, texture coordinates, and edge flag are indeterminate if the
corresponding array has been enabled.

With glDrawElements(), the vertices for each face of the cube can be placed in an array
of indices. Example 2-11 shows two ways to use glDrawElements() to render the cube.
Figure 2-15 shows the numbering of the vertices used in Example 2-11.
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Figure 2-15 Cube with Numbered Vertices

Example 2-11 Two Ways to Use glDrawElements()

static GLubyte frontIndices = {4, 5, 6, 7};
static GLubyte rightIndices = {1, 2, 6, 5};
static GLubyte bottomIndices = {0, 1, 5, 4};
static GLubyte backIndices = {0, 3, 2, 1};
static GLubyte leftIndices = {0, 4, 7, 3};
static GLubyte topIndices = {2, 3, 7, 6};

glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, frontIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, rightIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, bottomIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, backIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, leftIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, topIndices);

Or better still, crunch all the indices together:

static GLubyte allIndices = {4, 5, 6, 7, 1, 2, 6, 5,
0, 1, 5, 4, 0, 3, 2, 1,
0, 4, 7, 3, 2, 3, 7, 6};

glDrawElements(GL_QUADS, 24, GL_UNSIGNED_BYTE, allIndices);

Note: It is an error to encapsulate glDrawElements() between a glBegin()/glEnd() pair.

With both glArrayElement() and glDrawElements(), it is also possible that your
OpenGL implementation caches recently processed vertices, allowing your application
to “share” or “reuse” vertices. Take the aforementioned cube, for example, which has six
faces (polygons) but only eight vertices. Each vertex is used by exactly three faces.
Without glArrayElement() or glDrawElements(), rendering all six faces would require
processing twenty-four vertices, even though sixteen vertices would be redundant. Your
implementation of OpenGL may be able to minimize redundancy and process as few as
eight vertices. (Reuse of vertices may be limited to all vertices within a single
glDrawElements() call or, for glArrayElement(), within one glBegin()/glEnd() pair.)

4 5

6
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0
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Back
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Dereference a Sequence of Array Elements

While glArrayElement() and glDrawElements() “hop around” your data arrays,
glDrawArrays() plows straight through them.

void glDrawArrays(GLenummode, GLint first, GLsizeicount);

Constructs a sequence of geometric primitives using array elements starting atfirst
and ending atfirst+count-1 of each enabled array.mode specifies what kinds of
primitives are constructed and is one of the same values accepted by glBegin(); for
example, GL_POLYGON, GL_LINE_LOOP, GL_LINES, GL_POINTS, and so on.

The effect of glDrawArrays() is almost the same as this command sequence:

int i;
glBegin (mode);
for (i = 0; i < count; i++)
   glArrayElement(first + i);
glEnd();

As is the case with glDrawElements(), glDrawArrays() also performs error checking on
its parameter values and leaves the current RGB color, color index, normal coordinates,
texture coordinates, and edge flag with indeterminate values if the corresponding array
has been enabled.

Try This

• Change the icosahedron drawing routine in Example 2-13 to use vertex arrays.
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Interleaved Arrays

Advanced

Earlier in this chapter (in “Stride”), the special case of interleaved arrays was examined.
In that section, the arrayintertwined, which interleaves RGB color and 3D vertex
coordinates, was accessed by calls to glColorPointer() and glVertexPointer(). Careful
use of stride helped properly specify the arrays.

static GLfloat intertwined[] =
      {1.0, 0.2, 1.0, 100.0, 100.0, 0.0,
       1.0, 0.2, 0.2, 0.0, 200.0, 0.0,
       1.0, 1.0, 0.2, 100.0, 300.0, 0.0,
       0.2, 1.0, 0.2, 200.0, 300.0, 0.0,
       0.2, 1.0, 1.0, 300.0, 200.0, 0.0,
       0.2, 0.2, 1.0, 200.0, 100.0, 0.0};

There is also a behemoth routine, glInterleavedArrays(), that can specify several vertex
arrays at once. glInterleavedArrays() also enables and disables the appropriate arrays (so
it combines both Steps 1 and 2). The arrayintertwined exactly fits one of the fourteen
data interleaving configurations supported by glInterleavedArrays(). So to specify the
contents of the arrayintertwined into the RGB color and vertex arrays and enable both
arrays, call

glInterleavedArrays (GL_C3F_V3F, 0, intertwined);

This call to glInterleavedArrays() enables the GL_COLOR_ARRAY and
GL_VERTEX_ARRAY arrays. It disables the GL_INDEX_ARRAY,
GL_TEXTURE_COORD_ARRAY, GL_NORMAL_ARRAY, and
GL_EDGE_FLAG_ARRAY.

This call also has the same effect as calling glColorPointer() and glVertexPointer() to
specify the values for six vertices into each array. Now you are ready for Step 3: Calling
glArrayElement(), glDrawElements(), or glDrawArrays() to dereference array elements.

void glInterleavedArrays(GLenumformat, GLsizeistride, void *pointer)

Initializes all six arrays, disabling arrays that are not specified informat, and enabling
the arrays that are specified.format is one of 14 symbolic constants, which represent
14 data configurations; Table 2-5 displaysformatvalues.stride specifies the byte
offset between consecutive vertexes. Ifstride is 0, the vertexes are understood to be
tightly packed in the array.pointer is the memory address of the first coordinate of the
first vertex in the array.

Note that glInterleavedArrays() does not support edge flags.
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The mechanics of glInterleavedArrays() are intricate and require reference to
Example 2-12 and Table 2-5. In that example and table, you’ll see et, ec, and en, which
are the boolean values for the enabled or disabled texture coordinate, color, and normal
arrays, and you’ll see st, sc, and sv, which are the sizes (number of components) for the
texture coordinate, color, and vertex arrays. tc is the data type for RGBA color, which is
the only array that can have non-float interleaved values. pc, pn, and pv are the calculated
strides for jumping over individual color, normal, and vertex values, and s is the stride
(if one is not specified by the user) to jump from one array element to the next.

The effect of glInterleavedArrays() is the same as calling the command sequence in
Example 2-12 with many values defined in Table 2-5. All pointer arithmetic is
performed in units of sizeof(GL_UNSIGNED_BYTE).

Example 2-12 Effect of glInterleavedArrays(format, stride, pointer)

int str;
/*  set e t , e c, e n, s t , s c, s v, t c, p c, p n, p v, and s
 *  as a function of Table 2-5 and the value of format
 */
str = stride;
if (str == 0)
   str = s;
glDisableClientState(GL_EDGE_FLAG_ARRAY);
glDisableClientState(GL_INDEX_ARRAY);
if (e t ) {
   glEnableClientState(GL_TEXTURE_COORD_ARRAY);
   glTexCoordPointer(s t , GL_FLOAT, str, pointer);
}
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else
   glDisableClientState(GL_TEXTURE_COORD_ARRAY);
if (e c) {
   glEnableClientState(GL_COLOR_ARRAY);
   glColorPointer(s c, t c, str, pointer+p c);
}
else
   glDisableClientState(GL_COLOR_ARRAY);
if (e n) {
   glEnableClientState(GL_NORMAL_ARRAY);
   glNormalPointer(GL_FLOAT, str, pointer+p n);
}
else
   glDisableClientState(GL_NORMAL_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(s v, GL_FLOAT, str, pointer+p v);

In Table 2-5, T and F are True and False. f is sizeof(GL_FLOAT). c is 4 times
sizeof(GL_UNSIGNED_BYTE), rounded up to the nearest multiple of f.

Start by learning the simpler formats, GL_V2F, GL_V3F, and GL_C3F_V3F. If you use
any of the formats with C4UB, you may have to use a struct data type or do some delicate
type casting and pointer math to pack four unsigned bytes into a single 32-bit word.

format e t ec en st sc sv tc pc pn pv s

GL_V2F F F F 2 0 2f

GL_V3F F F F 3 0 3f

GL_C4UB_V2F F T F 4 2 GL_UNSIGNED_BYTE 0 c c+2f

GL_C4UB_V3F F T F 4 3 GL_UNSIGNED_BYTE 0 c c+3f

GL_C3F_V3F F T F 3 3 GL_FLOAT 0 3f 6f

GL_N3F_V3F F F T 3 0 3f 6f

GL_C4F_N3F_V3F F T T 4 3 GL_FLOAT 0 4f 7f 10f

GL_T2F_V3F T F F 2 3 2f 5f

GL_T4F_V4F T F F 4 4 4f 8f

GL_T2F_C4UB_V3F T T F 2 4 3 GL_UNSIGNED_BYTE 2f c+2f c+5f

GL_T2F_C3F_V3F T T F 2 3 3 GL_FLOAT 2f 5f 8f

GL_T2F_N3F_V3F T F T 2 3 2f 5f 8f

GL_T2F_C4F_N3F_V3F T T T 2 4 3 GL_FLOAT 2f 6f 9f 12f

GL_T4F_C4F_N3F_V4F T T T 4 4 4 GL_FLOAT 4f 8f 11f 15f

Table 2-5 Variables that Direct glInterleavedArrays()
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For some OpenGL implementations, use of interleaved arrays may increase application
performance. With an interleaved array, the exact layout of your data is known. You
know your data is tightly packed and may be accessed in one chunk. If interleaved arrays
are not used, the stride and size information has to be examined to detect whether data
is tightly packed.

Note: glInterleavedArrays() only enables and disables vertex arrays and specifies
values for the vertex-array data. It does not render anything. You must still
complete Step 3 and call glArrayElement(), glDrawElements(), or
glDrawArrays() to dereference the pointers and render graphics.

Attribute Groups

In “Basic State Management,” you saw how to set or query an individual state or state
variable. Well, you can also save and restore the values of a collection of related state
variables with a single command.

OpenGL groups related state variables into anattribute group. For example, the
GL_LINE_BIT attribute consists of five state variables: the line width, the
GL_LINE_STIPPLE enable status, the line stipple pattern, the line stipple repeat
counter, and the GL_LINE_SMOOTH enable status. (See “Antialiasing” in Chapter 6.)
With the commands glPushAttrib() and glPopAttrib(), you can save and restore all five
state variables, all at once.

Some state variables are in more than one attribute group. For example, the state
variable, GL_CULL_FACE, is part of both the polygon and the enable attribute groups.

In OpenGL Version 1.1, there are now two different attribute stacks. In addition to the
original attribute stack (which saves the values of server state variables), there is also a
client attribute stack, accessible by the commands glPushClientAttrib() and
glPopClientAttrib().

In general, it’s faster to use these commands than to get, save, and restore the values
yourself. Some values might be maintained in the hardware, and getting them might be
expensive. Also, if you’re operating on a remote client, all the attribute data has to be
transferred across the network connection and back as it is obtained, saved, and
restored. However, your OpenGL implementation keeps the attribute stack on the
server, avoiding unnecessary network delays.

There are about twenty different attribute groups, which can be saved and restored by
glPushAttrib() and glPopAttrib(). There are two client attribute groups, which can be
saved and restored by glPushClientAttrib() and glPopClientAttrib(). For both server
and client, the attributes are stored on a stack, which has a depth of at least 16 saved
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attribute groups. (The actual stack depths for your implementation can be obtained
using GL_MAX_ATTRIB_STACK_DEPTH and
GL_MAX_CLIENT_ATTRIB_STACK_DEPTH with glGetIntegerv().) Pushing a full
stack or popping an empty one generates an error.

(See the tables in Appendix B to find out exactly which attributes are saved for particular
mask values; that is, which attributes are in a particular attribute group.)

void glPushAttrib(GLbitfieldmask);
void glPopAttrib(void);

glPushAttrib() saves all the attributes indicated by bits inmask by pushing them onto
the attribute stack. glPopAttrib() restores the values of those state variables that were
saved with the last glPushAttrib(). Table 2-7 lists the possible mask bits that can be
logically ORed together to save any combination of attributes. Each bit corresponds
to a collection of individual state variables. For example, GL_LIGHTING_BIT refers
to all the state variables related to lighting, which include the current material color,
the ambient, diffuse, specular, and emitted light, a list of the lights that are enabled,
and the directions of the spotlights. When glPopAttrib() is called, all those variables
are restored.

The special mask, GL_ALL_ATTRIB_BITS, is used to save and restore all the state
variables in all the attribute groups.

Mask Bit Attribute Group

GL_ACCUM_BUFFER_BIT accum-buffer

GL_ALL_ATTRIB_BITS --

GL_COLOR_BUFFER_BIT color-buffer

GL_CURRENT_BIT current

GL_DEPTH_BUFFER_BIT depth-buffer

GL_ENABLE_BIT enable

GL_EVAL_BIT eval

GL_FOG_BIT fog

GL_HINT_BIT hint

GL_LIGHTING_BIT lighting

Table 2-6 Attribute Groups
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void glPushClientAttrib(GLbitfieldmask);
void glPopClientAttrib(void);

glPushClientAttrib() saves all the attributes indicated by bits inmask by pushing them
onto the client attribute stack. glPopClientAttrib() restores the values of those state
variables that were saved with the last glPushClientAttrib(). Table 2-7 lists the
possible mask bits that can be logically ORed together to save any combination of
client attributes.

There are two client attribute groups, feedback and select, that cannot be saved or
restored with the stack mechanism.

GL_LINE_BIT line

GL_LIST_BIT list

GL_PIXEL_MODE_BIT pixel

GL_POINT_BIT point

GL_POLYGON_BIT polygon

GL_POLYGON_STIPPLE_BIT polygon-stipple

GL_SCISSOR_BIT scissor

GL_STENCIL_BUFFER_BIT stencil-buffer

GL_TEXTURE_BIT texture

GL_TRANSFORM_BIT transform

GL_VIEWPORT_BIT viewport

Mask Bit Attribute Group

GL_CLIENT_PIXEL_STORE_BIT pixel-store

GL_CLIENT_VERTEX_ARRAY_BIT vertex-array

GL_ALL_CLIENT_ATTRIB_BITS --

can’t be pushed or popped feedback

Table 2-7 Client Attribute Groups

Mask Bit Attribute Group

Table 2-6 (continued)        Attribute Groups
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Some Hints for Building Polygonal Models of
Surfaces

Following are some techniques that you might want to use as you build polygonal
approximations of surfaces. You might want to review this section after you’ve read
Chapter 5 on lighting and Chapter 7 on display lists. The lighting conditions affect how
models look once they’re drawn, and some of the following techniques are much more
efficient when used in conjunction with display lists. As you read these techniques, keep
in mind that when lighting calculations are enabled, normal vectors must be specified to
get proper results.

Constructing polygonal approximations to surfaces is an art, and there is no substitute
for experience. This section, however, lists a few pointers that might make it a bit easier
to get started.

• Keep polygon orientations consistent. Make sure that when viewed from the
outside, all the polygons on the surface are oriented in the same direction (all
clockwise or all counterclockwise). Consistent orientation is important for polygon
culling and two-sided lighting. Try to get this right the first time, since it’s
excruciatingly painful to fix the problem later. (If you use glScale*() to reflect
geometry around some axis of symmetry, you might change the orientation with
glFrontFace() to keep the orientations consistent.)

• When you subdivide a surface, watch out for any nontriangular polygons. The
three vertices of a triangle are guaranteed to lie on a plane; any polygon with four
or more vertices might not. Nonplanar polygons can be viewed from some
orientation such that the edges cross each other, and OpenGL might not render
such polygons correctly.

• There’s always a trade-off between the display speed and the quality of the image.
If you subdivide a surface into a small number of polygons, it renders quickly but
might have a jagged appearance; if you subdivide it into millions of tiny polygons,
it probably looks good but might take a long time to render. Ideally, you can
provide a parameter to the subdivision routines that indicates how fine a
subdivision you want, and if the object is farther from the eye, you can use a
coarser subdivision. Also, when you subdivide, use large polygons where the
surface is relatively flat, and small polygons in regions of high curvature.

can’t be pushed or popped select

Mask Bit Attribute Group

Table 2-7 Client Attribute Groups
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• For high-quality images, it’s a good idea to subdivide more on the silhouette edges
than in the interior. If the surface is to be rotated relative to the eye, this is tougher
to do, since the silhouette edges keep moving. Silhouette edges occur where the
normal vectors are perpendicular to the vector from the surface to the
viewpoint—that is, when their vector dot product is zero. Your subdivision
algorithm might choose to subdivide more if this dot product is near zero.

• Try to avoid T-intersections in your models (see Figure 2-16). As shown, there’s no
guarantee that the line segments AB and BC lie on exactly the same pixels as the
segment AC. Sometimes they do, and sometimes they don’t, depending on the
transformations and orientation. This can cause cracks to appear intermittently in
the surface.

Figure 2-16 Modifying an Undesirable T-intersection

• If you’re constructing a closed surface, make sure to use exactly the same numbers
for coordinates at the beginning and end of a closed loop, or you can get gaps and
cracks due to numerical round-off. Here’s a two-dimensional example of bad code:

/* don’t use this code */
#define PI 3.14159265
#define EDGES 30

/* draw a circle */
glBegin(GL_LINE_STRIP);
for (i = 0; i <= EDGES; i++)
    glVertex2f(cos((2*PI*i)/EDGES), sin((2*PI*i)/EDGES));
glEnd();

The edges meet exactly only if your machine manages to calculate the sine and
cosine of 0 and of (2*PI*EDGES/EDGES) and gets exactly the same values. If
you trust the floating-point unit on your machine to do this right, the authors have a
bridge they’d like to sell you.... To correct the code, make sure that wheni ==
EDGES, you use 0 for the sine and cosine, not 2*PI*EDGES/EDGES. (Or simpler
still, use GL_LINE_LOOP instead of GL_LINE_STRIP, and change the loop
termination condition to i < EDGES.)

Undesirable OK

B
CA
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An Example: Building an Icosahedron

To illustrate some of the considerations that arise in approximating a surface, let’s look
at some example code sequences. This code concerns the vertices of a regular
icosahedron (which is a Platonic solid composed of twenty faces that span twelve
vertices, each face of which is an equilateral triangle). An icosahedron can be considered
a rough approximation for a sphere. Example 2-13 defines the vertices and triangles
making up an icosahedron and then draws the icosahedron.

Example 2-13 Drawing an Icosahedron

#define X .525731112119133606
#define Z .850650808352039932

static GLfloat vdata[12][3] = {
   {-X, 0.0, Z}, {X, 0.0, Z}, {-X, 0.0, -Z}, {X, 0.0, -Z},
   {0.0, Z, X}, {0.0, Z, -X}, {0.0, -Z, X}, {0.0, -Z, -X},
   {Z, X, 0.0}, {-Z, X, 0.0}, {Z, -X, 0.0}, {-Z, -X, 0.0}
};
static GLuint tindices[20][3] = {
   {0,4,1}, {0,9,4}, {9,5,4}, {4,5,8}, {4,8,1},
   {8,10,1}, {8,3,10}, {5,3,8}, {5,2,3}, {2,7,3},
   {7,10,3}, {7,6,10}, {7,11,6}, {11,0,6}, {0,1,6},
   {6,1,10}, {9,0,11}, {9,11,2}, {9,2,5}, {7,2,11} };
int i;

glBegin(GL_TRIANGLES);
for (i = 0; i < 20; i++) {
   /* color information here */
   glVertex3fv(&vdata[tindices[i][0]][0]);
   glVertex3fv(&vdata[tindices[i][1]][0]);
   glVertex3fv(&vdata[tindices[i][2]][0]);
}
glEnd();

The strange numbersX andZ are chosen so that the distance from the origin to any of
the vertices of the icosahedron is 1.0. The coordinates of the twelve vertices are given in
the arrayvdata[][], where the zeroth vertex is{−X, 0.0, Z}, the first is {X, 0.0, Z}, and
so on. The arraytindices[][] tells how to link the vertices to make triangles. For example,
the first triangle is made from the zeroth, fourth, and first vertex. If you take the vertices
for triangles in the order given, all the triangles have the same orientation.

The line that mentions color information should be replaced by a command that sets the
color of theith face. If no code appears here, all faces are drawn in the same color, and
it’ll be impossible to discern the three-dimensional quality of the object. An alternative
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to explicitly specifying colors is to define surface normals and use lighting, as described
in the next subsection.

Note: In all the examples described in this section, unless the surface is to be drawn
only once, you should probably save the calculated vertex and normal
coordinates so that the calculations don’t need to be repeated each time that the
surface is drawn. This can be done using your own data structures or by
constructing display lists. (See Chapter 7.)

Calculating Normal Vectors for a Surface

If a surface is to be lit, you need to supply the vector normal to the surface. Calculating
the normalized cross product of two vectors on that surface provides normal vector. With
the flat surfaces of an icosahedron, all three vertices defining a surface have the same
normal vector. In this case, the normal needs to be specified only once for each set of
three vertices. The code in Example 2-14 can replace the “color information here” line
in Example 2-13 for drawing the icosahedron.

Example 2-14 Generating Normal Vectors for a Surface

GLfloat d1[3], d2[3], norm[3];
for (j = 0; j < 3; j++) {
   d1[j] = vdata[tindices[i][0]][j] - vdata[tindices[i][1]][j];
   d2[j] = vdata[tindices[i][1]][j] - vdata[tindices[i][2]][j];
}
normcrossprod(d1, d2, norm);
glNormal3fv(norm);

The function normcrossprod() produces the normalized cross product of two vectors, as
shown in Example 2-15.

Example 2-15 Calculating the Normalized Cross Product of Two Vectors

void normalize(float v[3]) {
   GLfloat d = sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);
   if (d == 0.0) {
      error(“zero length vector”);
      return;
   }
   v[0] /= d; v[1] /= d; v[2] /= d;
}

void normcrossprod(float v1[3], float v2[3], float out[3])
{
   GLint i, j;
   GLfloat length;
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   out[0] = v1[1]*v2[2] - v1[2]*v2[1];
   out[1] = v1[2]*v2[0] - v1[0]*v2[2];
   out[2] = v1[0]*v2[1] - v1[1]*v2[0];
   normalize(out);
}

If you’re using an icosahedron as an approximation for a shaded sphere, you’ll want to
use normal vectors that are perpendicular to the true surface of the sphere, rather than
being perpendicular to the faces. For a sphere, the normal vectors are simple; each points
in the same direction as the vector from the origin to the corresponding vertex. Since the
icosahedron vertex data is for an icosahedron of radius 1, the normal and vertex data is
identical. Here is the code that would draw an icosahedral approximation of a smoothly
shaded sphere (assuming that lighting is enabled, as described in Chapter 5):

glBegin(GL_TRIANGLES);
for (i = 0; i < 20; i++) {
      glNormal3fv(&vdata[tindices[i][0]][0]);
      glVertex3fv(&vdata[tindices[i][0]][0]);
      glNormal3fv(&vdata[tindices[i][1]][0]);
      glVertex3fv(&vdata[tindices[i][1]][0]);
      glNormal3fv(&vdata[tindices[i][2]][0]);
      glVertex3fv(&vdata[tindices[i][2]][0]);
}
glEnd();

Improving the Model

A twenty-sided approximation to a sphere doesn’t look good unless the image of the
sphere on the screen is quite small, but there’s an easy way to increase the accuracy of
the approximation. Imagine the icosahedron inscribed in a sphere, and subdivide the
triangles as shown in Figure 2-17. The newly introduced vertices lie slightly inside the
sphere, so push them to the surface by normalizing them (dividing them by a factor to
make them have length 1). This subdivision process can be repeated for arbitrary
accuracy. The three objects shown in Figure 2-17 use 20, 80, and 320 approximating
triangles, respectively.

Figure 2-17 Subdividing to Improve a Polygonal Approximation to a Surface
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Example 2-16 performs a single subdivision, creating an 80-sided spherical
approximation.

Example 2-16 Single Subdivision

void drawtriangle(float *v1, float *v2, float *v3)
{
   glBegin(GL_TRIANGLES);
      glNormal3fv(v1); vlVertex3fv(v1);
      glNormal3fv(v2); vlVertex3fv(v2);
      glNormal3fv(v3); vlVertex3fv(v3);
   glEnd();
}

void subdivide(float *v1, float *v2, float *v3)
{
   GLfloat v12[3], v23[3], v31[3];
   GLint i;

   for (i = 0; i < 3; i++) {
      v12[i] = v1[i]+v2[i];
      v23[i] = v2[i]+v3[i];
      v31[i] = v3[i]+v1[i];
   }
   normalize(v12);
   normalize(v23);
   normalize(v31);
   drawtriangle(v1, v12, v31);
   drawtriangle(v2, v23, v12);
   drawtriangle(v3, v31, v23);
   drawtriangle(v12, v23, v31);
}

for (i = 0; i < 20; i++) {
   subdivide(&vdata[tindices[i][0]][0],
             &vdata[tindices[i][1]][0],
             &vdata[tindices[i][2]][0]);
}

Example 2-17 is a slight modification of Example 2-16 which recursively subdivides the
triangles to the proper depth. If the depth value is 0, no subdivisions are performed, and
the triangle is drawn as is. If the depth is 1, a single subdivision is performed, and so on.

Example 2-17 Recursive Subdivision

void subdivide(float *v1, float *v2, float *v3, long depth)
{
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   GLfloat v12[3], v23[3], v31[3];
   GLint i;

   if (depth == 0) {
      drawtriangle(v1, v2, v3);
      return;
   }
   for (i = 0; i < 3; i++) {
      v12[i] = v1[i]+v2[i];
      v23[i] = v2[i]+v3[i];
      v31[i] = v3[i]+v1[i];
   }
   normalize(v12);
   normalize(v23);
   normalize(v31);
   subdivide(v1, v12, v31, depth-1);
   subdivide(v2, v23, v12, depth-1);
   subdivide(v3, v31, v23, depth-1);
   subdivide(v12, v23, v31, depth-1);
}

Generalized Subdivision

A recursive subdivision technique such as the one described in Example 2-17 can be
used for other types of surfaces. Typically, the recursion ends either if a certain depth is
reached or if some condition on the curvature is satisfied (highly curved parts of surfaces
look better with more subdivision).

To look at a more general solution to the problem of subdivision, consider an arbitrary
surface parameterized by two variablesu[0] andu[1]. Suppose that two routines are
provided:

void surf(GLfloat u[2], GLfloat vertex[3], GLfloat normal[3]);
float curv(GLfloat u[2]);

If surf() is passedu[], the corresponding three-dimensional vertex and normal vectors
(of length 1) are returned. Ifu[] is passed to curv(), the curvature of the surface at that
point is calculated and returned. (See an introductory textbook on differential geometry
for more information about measuring surface curvature.)

Example 2-18 shows the recursive routine that subdivides a triangle either until the
maximum depth is reached or until the maximum curvature at the three vertices is less
than some cutoff.

Example 2-18 Generalized Subdivision

void subdivide(float u1[2], float u2[2], float u3[2],
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                float cutoff, long depth)
{
   GLfloat v1[3], v2[3], v3[3], n1[3], n2[3], n3[3];
   GLfloat u12[2], u23[2], u32[2];
   GLint i;

   if (depth == maxdepth || (curv(u1) < cutoff &&
       curv(u2) < cutoff && curv(u3) < cutoff)) {
      surf(u1, v1, n1); surf(u2, v2, n2); surf(u3, v3, n3);
      glBegin(GL_POLYGON);
         glNormal3fv(n1); glVertex3fv(v1);
         glNormal3fv(n2); glVertex3fv(v2);
         glNormal3fv(n3); glVertex3fv(v3);
      glEnd();
      return;
   }
   for (i = 0; i < 2; i++) {
      u12[i] = (u1[i] + u2[i])/2.0;
      u23[i] = (u2[i] + u3[i])/2.0;
      u31[i] = (u3[i] + u1[i])/2.0;
   }
   subdivide(u1, u12, u31, cutoff, depth+1);
   subdivide(u2, u23, u12, cutoff, depth+1);
   subdivide(u3, u31, u23, cutoff, depth+1);
   subdivide(u12, u23, u31, cutoff, depth+1);
}
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